1a Edició - Codi 23822090

Array ( [CODIGO] => 23822090 [EDICION] => 1 [SITUACION] => Aprobado [SITUACION_BIS] => Suspendido [MATRICULA] => 2000 [MATRICULA_2] => 0 [MATRICULA_3] => 0 [HORAS] => 33.00 [FECHA_INICIO] => 20/10/23 [FECHA_FIN] => 29/06/24 [LUGAR] => [NOMBRE_EMPRESA_ORGANIZADOR] => Departament d'Enginyeria Electrònica [FECHA_FIN_PREINSCRIPCION] => 05/10/23 [AREA] => 8 [NOMBRE_EMPRESA_PATROCINADO] => [NOMBRE_EMPRESA_COLABORADOR] => [OBSERVACIONES_PREINSCRIPCION] => [TIPO_DOCENCIA] => A distancia [TIPO_DOCENCIA_1] => 3 [TIPO_DOCENCIA_2] => On-line [AULA_VIRTUAL_ADEIT] => 0 [TIPO_CURSO] => Postgrado [TIPO_CURSO_1] => Título Propio de Pos [DIRECCION_URL] => [AÑO_CURSO] => 35 [URL_VIDEO] => [URL_FACEBOOK] => [URL_TWITTER] => [META_TITLE] => [META_DESCRIPTION] => [META_KEYWORDS] => [DIRECCION_CURSO_CORTO] => analitica-avanzada-datos-salud [GESTOR_NOMBRE] => Mariam [GESTOR_APELLIDOS] => Conca [GESTOR_EMAIL] => marian.conca@fundacions.uv.es [ADMINISTRATIVO_NOMBRE] => Carolina [ADMINISTRATIVO_APELLIDOS] => Escribano Asensi [ADMINISTRATIVO_EMAIL] => carolina.escribano@fundacions.uv.es [ES_INTERNO] => 1 [EMAIL_EXTERNO] => informacion@adeituv.es [PREINSCRIPCION_WEB] => 0 [URL_AULA_VIRTUAL] => [OFERTADO_OTRO] => 0 [ID_CURSO_OFERTADO] => 0 [DESCRIPCION_OFERTADO] => [TELEFONO_EXTERNO] => 96 160 3000 [MATRICULA_PDTE_APROBACION] => 0 [ID_IDIOMA] => 4 [PUBLICAR_WEB] => 0 [area_curs] => Àrea de Ciències i Tecnologia [NOMBRE_CURSO] => Diploma d'Especialització en Analítica Avançada en Ciències de la Salut [TITULACION] => Diploma d'Especialització [HORARIO] => Divendres a la vesprada de 16 a 21 i dissabte de 9 a 14 [REQUISITOS_TITULACION] => Professionals de Ciències de la Salut que tinguen interès a analitzar conjunts de dades de salut amb la finalitat d'extraure coneixement d'aquests conjunts. [REQUISITOS_OTROS] => [ARG_VENTA] => Formar a professionals sanitaris en tècniques avançades en analítica de dades (models d'aprenentatge màquina i profund) mitjançant exemples implementats amb eines de fàcil ús i sense necessitat de programació [ARG_VENTA2] => [AÑO_CURSO_DESC] => Curs 2023/2024 [MODALIDAD_EVALUACION] => La metodologia és la clàssica de classe magistral amb una orientació molt pràctica, plantejant casos reals en cadascun dels diferents temes que té el curs. [MODALIDAD_EVALUACION2] => [OBSERVACION_MATRICULA_1] => [OBSERVACION_MATRICULA_2] => [OBSERVACION_MATRICULA_3] => [SALIDA_PROFESIONAL] => Aquest curs pot ajudar a millorar la inserció laboral dels professionals sanitaris en proporcionar-li una formació avançada que, actualment, no s'imparteix en els centres de formació. [CRITERIO_ADMISION] => [CRITERIO_ADMISION2] => [CRITERIO_ADMISION3] => [FORMACION_APRENDIZAJE] => [FORMACION_APRENDIZAJE2] => [FORMACION_APRENDIZAJE3] => [ANO_CURSO_DESC] => Curs 2023/2024 [programa] => Array ( [0] => Array ( [CODIGO_CURSO] => 23822090 [AÑO_CURSO] => 35 [CODIGO] => 2 [NOMBRE_MATERIA] => Ciències de la salut (CS) conduïdes per dades. [NOMBRE_MATERIA_VAL] => Ciències de la salut (CS) conduïdes per dades. [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Dades estructurades i no estructurats. Big Data. Ciència de Dades. Machine/Deep Learning. Visual Data Mining. NLP. Aprenentatge Reforçat. IA Explicable. Eines open source. Etapes d'un procés basat en dades. Eines cloud/serveis cognitius. Aplicacions en medicina. Tendències. Exposició d'empreses IA-CS [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Dades estructurades i no estructurats. Big Data. Ciència de Dades. Machine/Deep Learning. Visual Data Mining. NLP. Aprenentatge Reforçat. IA Explicable. Eines open source. Etapes d'un procés basat en dades. Eines cloud/serveis cognitius. Aplicacions en medicina. Tendències. Exposició d'empreses IA-CS [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 1 ) [1] => Array ( [CODIGO_CURSO] => 23822090 [AÑO_CURSO] => 35 [CODIGO] => 7 [NOMBRE_MATERIA] => CAS 1: Anàlisi estadística. [NOMBRE_MATERIA_VAL] => CAS 1: Anàlisi estadística. [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Descripció de l'eina a usa. Nocions de probabilitat. Nocions d'estadística. Contrast d'hipòtesis més estesos. Concepte de correlació. Aplicació a un problema pràctic en CS. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Descripció de l'eina a usa. Nocions de probabilitat. Nocions d'estadística. Contrast d'hipòtesis més estesos. Concepte de correlació. Aplicació a un problema pràctic en CS. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 2 ) [2] => Array ( [CODIGO_CURSO] => 23822090 [AÑO_CURSO] => 35 [CODIGO] => 6 [NOMBRE_MATERIA] => CAS 2: Agrupament i Manifolds. [NOMBRE_MATERIA_VAL] => CAS 2: Agrupament i Manifolds. [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Concepte de clustering. Manifolds: PCA, t-SNE i SOM. Aplicació a un cas pràctic en CS. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Concepte de clustering. Manifolds: PCA, t-SNE i SOM. Aplicació a un cas pràctic en CS. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 3 ) [3] => Array ( [CODIGO_CURSO] => 23822090 [AÑO_CURSO] => 35 [CODIGO] => 1 [NOMBRE_MATERIA] => CAS 3: Classificació. [NOMBRE_MATERIA_VAL] => CAS 3: Classificació. [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Mesures d'error. Regressió logística. Arbres de decisió. Random Forest. Aplicació a un cas pràctic en CS. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Mesures d'error. Regressió logística. Arbres de decisió. Random Forest. Aplicació a un cas pràctic en CS. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 4 ) [4] => Array ( [CODIGO_CURSO] => 23822090 [AÑO_CURSO] => 35 [CODIGO] => 4 [NOMBRE_MATERIA] => CAS 4: Regressió [NOMBRE_MATERIA_VAL] => CAS 4: Regressió [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Mesures d'error. Regressió multivariant. Arbres de regressió. Random Forest. Aplicació a un cas pràctic en CS. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Mesures d'error. Regressió multivariant. Arbres de regressió. Random Forest. Aplicació a un cas pràctic en CS. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 5 ) [5] => Array ( [CODIGO_CURSO] => 23822090 [AÑO_CURSO] => 35 [CODIGO] => 5 [NOMBRE_MATERIA] => CAS 5: Anàlisi de supervivència [NOMBRE_MATERIA_VAL] => CAS 5: Anàlisi de supervivència [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Dades censades. Aproximacions clàssiques: Kaplain-Meir; regressió de Coix. Aproximacions avançades. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Dades censades. Aproximacions clàssiques: Kaplain-Meir; regressió de Coix. Aproximacions avançades. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 6 ) [6] => Array ( [CODIGO_CURSO] => 23822090 [AÑO_CURSO] => 35 [CODIGO] => 3 [NOMBRE_MATERIA] => CAS 6: Deep Learning [NOMBRE_MATERIA_VAL] => CAS 6: Deep Learning [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Elements clàssics de deep learning: CNN; LSTM/GRU; MLP multicapa. Problemes en imatges. Problemes en NLP. Transfer Learning. Models fundacionals. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Elements clàssics de deep learning: CNN; LSTM/GRU; MLP multicapa. Problemes en imatges. Problemes en NLP. Transfer Learning. Models fundacionals. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 7 ) ) [professors] => Array ( [0] => Array ( [DNI] => uni56104 [NOMBRE_PERSONA] => Juan [APELLIDOS] => Gómez Sanchis [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => M8537 [EMAIL_FACULTAD] => juango3@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [1] => Array ( [DNI] => uni62469 [NOMBRE_PERSONA] => Valero [APELLIDOS] => Laparra Pérez-Muelas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Ayudante/a Doctor/a [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [2] => Array ( [DNI] => uni65456 [NOMBRE_PERSONA] => Marcelino [APELLIDOS] => Martínez Sober [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Catedrático/a de Universidad [NPI] => H4260 [EMAIL_FACULTAD] => martsobm@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [3] => Array ( [DNI] => emp17565 [NOMBRE_PERSONA] => Juan José [APELLIDOS] => Pérez Ruixo [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Senior Scientist. Johnson & Johnson, S.A. [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [4] => Array ( [DNI] => uni55311 [NOMBRE_PERSONA] => María [APELLIDOS] => Piles Guillem [PDI] => 6 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Investigador/a Contratado/a Ramón y Cajal. Universitat de València [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [5] => Array ( [DNI] => emp393057 [NOMBRE_PERSONA] => Pablo [APELLIDOS] => Rodríguez Belenguer [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => 0 [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [6] => Array ( [DNI] => emp376801 [NOMBRE_PERSONA] => Alejandro [APELLIDOS] => Rodríguez García [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [7] => Array ( [DNI] => uni64103 [NOMBRE_PERSONA] => Manuel Antonio [APELLIDOS] => Sánchez-Montañés Isla [PDI] => 3 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Contratado Doctor - Universidad Autónoma de Madrid [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [8] => Array ( [DNI] => uni29828 [NOMBRE_PERSONA] => Antonio José [APELLIDOS] => Serrano López [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => H8352 [EMAIL_FACULTAD] => ajserran@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [9] => Array ( [DNI] => uni51421 [NOMBRE_PERSONA] => Emilio [APELLIDOS] => Soria Olivas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Catedrático/a de Universidad [NPI] => H4268 [EMAIL_FACULTAD] => soriae@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [10] => Array ( [DNI] => uni55893 [NOMBRE_PERSONA] => Joan [APELLIDOS] => Vila Francés [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => H1797 [EMAIL_FACULTAD] => vifranjo@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [11] => Array ( [DNI] => uni74629 [NOMBRE_PERSONA] => Yolanda [APELLIDOS] => Vives Gilabert [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Ayudante/a Doctor/a [NPI] => N7731 [EMAIL_FACULTAD] => yovigi@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) [direccio] => Array ( [0] => Array ( [0] => Array ( [DNI] => uni29828 [NOMBRE_PERSONA] => Antonio José [APELLIDOS] => Serrano López [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => H8352 [EMAIL_FACULTAD] => ajserran@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) [1] => Array ( [0] => Array ( [DNI] => uni51421 [NOMBRE_PERSONA] => Emilio [APELLIDOS] => Soria Olivas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Catedrático/a de Universidad [NPI] => H4268 [EMAIL_FACULTAD] => soriae@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) ) )

Diploma d'Especialització en Analítica Avançada en Ciències de la Salut


Metodologia

La metodologia és la clàssica de classe magistral amb una orientació molt pràctica, plantejant casos reals en cadascun dels diferents temes que té el curs.

Solicita información

Responsable: Universitat de València. Edifici del Rectorat. Av. Blasco Ibáñez, 13. 46010-València.
Delegat de Protecció de Dades: D. Javier Plaza Penadés lopd@uv.es
Finalitat: Enviar informació rellevant de cursos de postgrau.
S'obtenen perfils a fi de personalitzar el tracte conforme a les seves característiques o necessitats i poder així dirigir-li les novetats més convenients.
Legitimació: Per a l'enviament d'informació sobre els títols propis de la Universitat de València la base de legitimació és el consentiment de l'interessat.
Destinataris: Fundació Universitat-Empresa de Valéncia and Universitat de València
Termini: Les dades de l'Usuari seran conservats fins que sol·liciti la seva baixa, s'oposi o revoqui el seu consentiment.
Drets: Accedir, rectificar i suprimir les dades així com altres drets com s'explica a la informació addicional.
Amplieu informació: www.adeituv.es/politica-de-privacidad.

FAQS
 
Imprimir la informaciò