Máster de Formación Permanente en Inteligencia Artificial

4.ª Edición - Código 23811230

Array ( [CODIGO] => 23811230 [EDICION] => 4 [SITUACION] => Aprobado [SITUACION_BIS] => Pendiente [MATRICULA] => 3500 [MATRICULA_2] => 0 [MATRICULA_3] => 0 [HORAS] => 60.00 [FECHA_INICIO] => 22/09/2023 [FECHA_FIN] => 31/07/2024 [LUGAR] => [NOMBRE_EMPRESA_ORGANIZADOR] => Escola Tècnica Superior d'Enginyeria (ETSE-UV) [FECHA_FIN_PREINSCRIPCION] => 08/09/2023 [AREA] => 8 [NOMBRE_EMPRESA_PATROCINADO] => [NOMBRE_EMPRESA_COLABORADOR] => [OBSERVACIONES_PREINSCRIPCION] => [TIPO_DOCENCIA] => A distancia [TIPO_DOCENCIA_1] => 3 [TIPO_DOCENCIA_2] => On-line [AULA_VIRTUAL_ADEIT] => 0 [TIPO_CURSO] => Postgrado [TIPO_CURSO_1] => Título Propio de Pos [DIRECCION_URL] => [AÑO_CURSO] => 35 [URL_VIDEO] => [URL_FACEBOOK] => [URL_TWITTER] => [META_TITLE] => [META_DESCRIPTION] => [META_KEYWORDS] => [DIRECCION_CURSO_CORTO] => inteligencia-artificial-IA [GESTOR_NOMBRE] => Mariam [GESTOR_APELLIDOS] => Conca [GESTOR_EMAIL] => marian.conca@fundacions.uv.es [ADMINISTRATIVO_NOMBRE] => Carolina [ADMINISTRATIVO_APELLIDOS] => Escribano Asensi [ADMINISTRATIVO_EMAIL] => carolina.escribano@fundacions.uv.es [ES_INTERNO] => 1 [EMAIL_EXTERNO] => informacion@adeituv.es [PREINSCRIPCION_WEB] => 1 [URL_AULA_VIRTUAL] => [OFERTADO_OTRO] => 0 [ID_CURSO_OFERTADO] => 0 [DESCRIPCION_OFERTADO] => [TELEFONO_EXTERNO] => 96 160 3000 [MATRICULA_PDTE_APROBACION] => 1 [ID_IDIOMA] => 4 [PUBLICAR_WEB] => 1 [area_curs] => Área de Ciencias y Tecnología [NOMBRE_CURSO] => Máster de Formación Permanente en Inteligencia Artificial [TITULACION] => Máster de Formación Permanente [HORARIO] => Viernes de 16:00 a 21:00 y Sábado de 9:00 a 14:00 [REQUISITOS_TITULACION] => Profesionales y estudiantes interesados en conocer las diversas herramientas de IA para ser aplicadas en diferentes empresas/sectores productivos. El perfil de los participantes es el de ingenieros, matemáticos, físicos, químicos, estadísticos y economistas. No es necesaria experiencia previa en este tipo de temática. [REQUISITOS_OTROS] => [ARG_VENTA] => Este máster tiene como objetivos proporcionar los conocimientos necesarios para poder aplicar las técnicas más avanzadas de Inteligencia Artificial, teniendo la capacidad de formar profesionales altamente cualificados y con los conocimientos/skills necesarios para resolver problemas complejos, desarrollar tareas de responsabilidad en empresas o iniciar actividades de investigación tanto teórica como práctica en inteligencia artificial. Se dirige a todas las personas que procedan del ámbito de las ingenierías, ciencias puras (Matemáticas/Física) o Económicas con un background en modelización. [ARG_VENTA2] => [AÑO_CURSO_DESC] => [MODALIDAD_EVALUACION] => La metodología es la clásica de clase magistral con una orientación muy práctica, planteando casos reales en cada uno de los diferentes temas que tiene el curso. [MODALIDAD_EVALUACION2] => [OBSERVACION_MATRICULA_1] => [OBSERVACION_MATRICULA_2] => [OBSERVACION_MATRICULA_3] => [SALIDA_PROFESIONAL] => Estos perfiles profesionales pueden desarrollar su actividad en cualquier organización que utilice herramientas de IA o analice datos de cara a optimizar su negocio. Está especialmente diseñado para formar profesionales en los siguientes sectores: Sector financiero y de seguros; Sector de consultoría; Comercio electrónico; Institutos de investigación; Instituciones públicas; así como Departamentos de análisis de datos de otras industrias. [ANO_CURSO_DESC] => Curso 2023/2024 [programa] => Array ( [0] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 8 [NOMBRE_MATERIA] => Herramientas para la IA [NOMBRE_MATERIA_VAL] => Eines per a la IA [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Introducción al máster: Machine/Deep Learning/IA. Principales programas para IA. R/Python/Tensorflow/Keras/Pytorch. Conceptos de algebra; probabilidad; estadística. Machine Learning. Revisión de conceptos. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Introducció al màster: Machine/Deep Learning/IA. Principals programes per a IA. R/Python/Tensorflow/Keras/Pytorch. Conceptes de algebra; probabilitat; estadística. Machine Learning. Revisió de conceptes. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 1 ) [1] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 3 [NOMBRE_MATERIA] => Aprendizaje profundo (I) [NOMBRE_MATERIA_VAL] => Aprenentatge profund (I) [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Redes neuronales multicapa estrechas y profundas. Implementación de modelos neuronales profundos con Keras/Tensorflow. Aplicaciones en modelización y clasificación: ejemplos. Autoencoders. Redes convolucionales. Arquitecturas y Algoritmos de aprendizaje. Aprendizaje por transferencia. Ejemplos de aplicación. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Xarxes neuronals multicapa estretes i profundes. Implementació de models neuronals profunds amb Keras/Tensorflow. Aplicacions en modelització i classificació: exemples. Autoencoders. Xarxes convolucionals. Arquitectures i Algorismes d'aprenentatge. Aprenentatge per transferència. Exemples d'aplicació. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 2 ) [2] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 1 [NOMBRE_MATERIA] => Aprendizaje profundo (II) [NOMBRE_MATERIA_VAL] => Aprenentatge profund (II) [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Redes neuronales recurrentes (RNN): LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), Bidirectional LSTM. Aplicaciones en finanzas. Redes Generativas Adversariales (GAN). [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Xarxes neuronals recurrents (RNN): LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), Bidirectional LSTM. Aplicacions en finances. Xarxes Generatives Adversariales (GAN). [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 3 ) [3] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 5 [NOMBRE_MATERIA] => Aprendizaje Reforzado [NOMBRE_MATERIA_VAL] => Aprenentatge Reforça [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Introducción. Fundamentos matemáticos: Ecuación de Bellman. Procesos MDP. Aprendizaje por diferencias temporales. SARSA. Q-Learning. DQN y variantes. RL basado en políticas. Modelos Actor-Crítico. Versiones profundas. Ejemplos de aplicación. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Introducción. Fundamentos matemáticos: Ecuación de Bellman. Procesos MDP. Aprendizaje por diferencias temporales. SARSA. Q-Learning. DQN y variantes. RL basado en políticas. Modelos Actor-Crítico. Versiones profundas. Ejemplos de aplicación. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 4 ) [4] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 2 [NOMBRE_MATERIA] => Procesado del Lenguaje Natural [NOMBRE_MATERIA_VAL] => Processament del Llenguatge Natural [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Adquisición y preprocesado de texto. Extracción de características BoW y TF-IDF. Topic Modeling. Extracción de información. Word embeddings. Transformers. Modelos generativos. Ejemplos de aplicación. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Adquisició i preprocessament de text. Extracció de característiques BoW i TF-IDF. Topic Modeling. Extracció d'informació. Word embeddings. Transformers. Models generatius. Exemples d'aplicació. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 5 ) [5] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 4 [NOMBRE_MATERIA] => IA en cloud [NOMBRE_MATERIA_VAL] => IA en cloud [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => APIs de aprendizaje automático: Soluciones AWS: productos de DL y ML. Soluciones Google: AutoML, AI Hub. Microsoft Azure Machine Learning: servicios cognitivos. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => APIs d'aprenentatge automàtic: Solucions AWS: productes de DL i ML. Solucions Google: AutoML, AI Hub. Microsoft Azure Machine Learning: serveis cognitius [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 6 ) [6] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 6 [NOMBRE_MATERIA] => IA industrial [NOMBRE_MATERIA_VAL] => IA industrial [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Este módulo se evaluará mediante un trabajo que los alumnos deben realizar sobre una de las aplicaciones descritas a lo largo de esta asignatura (a elección del alumno). [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 7 ) [7] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 7 [NOMBRE_MATERIA] => Trabajo final de Máster [NOMBRE_MATERIA_VAL] => Treball final de Màster [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Desarrollo de un trabajo poniendo en práctica los conocimientos adquiridos [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Desenvolupament d'un treball posant en pràctica els coneixements adquirits [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 8 ) ) [professors] => Array ( [0] => Array ( [DNI] => emp368945 [NOMBRE_PERSONA] => Jacinto [APELLIDOS] => Arias Martínez [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => CEA / Demosense [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [1] => Array ( [DNI] => emp368940 [NOMBRE_PERSONA] => Raúl Vicente [APELLIDOS] => Casaña Eslava [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data Scientist / Santa Bárbara [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [2] => Array ( [DNI] => emp376854 [NOMBRE_PERSONA] => Javier [APELLIDOS] => Cózar del Olmo [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => CTO [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [3] => Array ( [DNI] => emp409235 [NOMBRE_PERSONA] => Juan José [APELLIDOS] => Garcés Iniesta [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => 0 [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [4] => Array ( [DNI] => uni56104 [NOMBRE_PERSONA] => Juan [APELLIDOS] => Gómez Sanchis [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => M8537 [EMAIL_FACULTAD] => juango3@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [5] => Array ( [DNI] => uni62469 [NOMBRE_PERSONA] => Valero [APELLIDOS] => Laparra Pérez-Muelas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Ayudante/a Doctor/a [NPI] => M7054 [EMAIL_FACULTAD] => lapeva@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [6] => Array ( [DNI] => uni62689 [NOMBRE_PERSONA] => Francisco [APELLIDOS] => Martínez Gil [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Informàtica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => H6216 [EMAIL_FACULTAD] => fmgil@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [7] => Array ( [DNI] => emp246039 [NOMBRE_PERSONA] => Francisco [APELLIDOS] => Martinez Martinez [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data Scientist/Santa Bárbara. Ingeniería Técnica de Telecomunicación, especialidad en Sistemas Electrónicos [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => Data Scientist / Santa Bárbara ) [8] => Array ( [DNI] => emp246038 [NOMBRE_PERSONA] => José María [APELLIDOS] => Martínez Martínez [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data Scientist / Santa Bárbara [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [9] => Array ( [DNI] => uni62742 [NOMBRE_PERSONA] => Fernando [APELLIDOS] => Mateo Jimenez [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Ayudante/a Doctor/a [NPI] => I6169 [EMAIL_FACULTAD] => fermaji@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [10] => Array ( [DNI] => emp376772 [NOMBRE_PERSONA] => Alberto [APELLIDOS] => Oteo García [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data scientist [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [11] => Array ( [DNI] => uni55311 [NOMBRE_PERSONA] => María [APELLIDOS] => Piles Guillem [PDI] => 6 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => N6012 [EMAIL_FACULTAD] => piguima@uv.es [CARGO_EMPRESA] => Investigador/a Contratado/a Ramón y Cajal. Universitat de València [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [12] => Array ( [DNI] => emp368937 [NOMBRE_PERSONA] => Rafael [APELLIDOS] => Plá Micó [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Presidente de Innovall Cluster [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [13] => Array ( [DNI] => emp376801 [NOMBRE_PERSONA] => Alejandro [APELLIDOS] => Rodríguez García [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [14] => Array ( [DNI] => uni64103 [NOMBRE_PERSONA] => Manuel Antonio [APELLIDOS] => Sánchez-Montañés Isla [PDI] => 3 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Contratado Doctor - Universidad Autónoma de Madrid [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [15] => Array ( [DNI] => uni51421 [NOMBRE_PERSONA] => Emilio [APELLIDOS] => Soria Olivas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Catedrático/a de Universidad [NPI] => H4268 [EMAIL_FACULTAD] => soriae@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [16] => Array ( [DNI] => uni55893 [NOMBRE_PERSONA] => Joan [APELLIDOS] => Vila Francés [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => H1797 [EMAIL_FACULTAD] => vifranjo@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) [direccio] => Array ( [0] => Array ( [0] => Array ( [DNI] => uni51421 [NOMBRE_PERSONA] => Emilio [APELLIDOS] => Soria Olivas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Catedrático/a de Universidad [NPI] => H4268 [EMAIL_FACULTAD] => soriae@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) [1] => Array ( [0] => Array ( [DNI] => emp368937 [NOMBRE_PERSONA] => Rafael [APELLIDOS] => Plá Micó [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Presidente de Innovall Cluster [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) ) )
Array ( [CODIGO] => 23811230 [EDICION] => 4 [SITUACION] => Aprobado [SITUACION_BIS] => Pendiente [MATRICULA] => 3500 [MATRICULA_2] => 0 [MATRICULA_3] => 0 [HORAS] => 60.00 [FECHA_INICIO] => 22/09/2023 [FECHA_FIN] => 31/07/2024 [LUGAR] => [NOMBRE_EMPRESA_ORGANIZADOR] => Escola Tècnica Superior d'Enginyeria (ETSE-UV) [FECHA_FIN_PREINSCRIPCION] => 08/09/2023 [AREA] => 8 [NOMBRE_EMPRESA_PATROCINADO] => [NOMBRE_EMPRESA_COLABORADOR] => [OBSERVACIONES_PREINSCRIPCION] => [TIPO_DOCENCIA] => A distancia [TIPO_DOCENCIA_1] => 3 [TIPO_DOCENCIA_2] => On-line [AULA_VIRTUAL_ADEIT] => 0 [TIPO_CURSO] => Postgrado [TIPO_CURSO_1] => Título Propio de Pos [DIRECCION_URL] => [AÑO_CURSO] => 35 [URL_VIDEO] => [URL_FACEBOOK] => [URL_TWITTER] => [META_TITLE] => [META_DESCRIPTION] => [META_KEYWORDS] => [DIRECCION_CURSO_CORTO] => inteligencia-artificial-IA [GESTOR_NOMBRE] => Mariam [GESTOR_APELLIDOS] => Conca [GESTOR_EMAIL] => marian.conca@fundacions.uv.es [ADMINISTRATIVO_NOMBRE] => Carolina [ADMINISTRATIVO_APELLIDOS] => Escribano Asensi [ADMINISTRATIVO_EMAIL] => carolina.escribano@fundacions.uv.es [ES_INTERNO] => 1 [EMAIL_EXTERNO] => informacion@adeituv.es [PREINSCRIPCION_WEB] => 1 [URL_AULA_VIRTUAL] => [OFERTADO_OTRO] => 0 [ID_CURSO_OFERTADO] => 0 [DESCRIPCION_OFERTADO] => [TELEFONO_EXTERNO] => 96 160 3000 [MATRICULA_PDTE_APROBACION] => 1 [ID_IDIOMA] => 4 [PUBLICAR_WEB] => 1 [area_curs] => Área de Ciencias y Tecnología [NOMBRE_CURSO] => Máster de Formación Permanente en Inteligencia Artificial [TITULACION] => Máster de Formación Permanente [HORARIO] => Viernes de 16:00 a 21:00 y Sábado de 9:00 a 14:00 [REQUISITOS_TITULACION] => Profesionales y estudiantes interesados en conocer las diversas herramientas de IA para ser aplicadas en diferentes empresas/sectores productivos. El perfil de los participantes es el de ingenieros, matemáticos, físicos, químicos, estadísticos y economistas. No es necesaria experiencia previa en este tipo de temática. [REQUISITOS_OTROS] => [ARG_VENTA] => Este máster tiene como objetivos proporcionar los conocimientos necesarios para poder aplicar las técnicas más avanzadas de Inteligencia Artificial, teniendo la capacidad de formar profesionales altamente cualificados y con los conocimientos/skills necesarios para resolver problemas complejos, desarrollar tareas de responsabilidad en empresas o iniciar actividades de investigación tanto teórica como práctica en inteligencia artificial. Se dirige a todas las personas que procedan del ámbito de las ingenierías, ciencias puras (Matemáticas/Física) o Económicas con un background en modelización. [ARG_VENTA2] => [AÑO_CURSO_DESC] => [MODALIDAD_EVALUACION] => La metodología es la clásica de clase magistral con una orientación muy práctica, planteando casos reales en cada uno de los diferentes temas que tiene el curso. [MODALIDAD_EVALUACION2] => [OBSERVACION_MATRICULA_1] => [OBSERVACION_MATRICULA_2] => [OBSERVACION_MATRICULA_3] => [SALIDA_PROFESIONAL] => Estos perfiles profesionales pueden desarrollar su actividad en cualquier organización que utilice herramientas de IA o analice datos de cara a optimizar su negocio. Está especialmente diseñado para formar profesionales en los siguientes sectores: Sector financiero y de seguros; Sector de consultoría; Comercio electrónico; Institutos de investigación; Instituciones públicas; así como Departamentos de análisis de datos de otras industrias. [ANO_CURSO_DESC] => Curso 2023/2024 [programa] => Array ( [0] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 8 [NOMBRE_MATERIA] => Herramientas para la IA [NOMBRE_MATERIA_VAL] => Eines per a la IA [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Introducción al máster: Machine/Deep Learning/IA. Principales programas para IA. R/Python/Tensorflow/Keras/Pytorch. Conceptos de algebra; probabilidad; estadística. Machine Learning. Revisión de conceptos. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Introducció al màster: Machine/Deep Learning/IA. Principals programes per a IA. R/Python/Tensorflow/Keras/Pytorch. Conceptes de algebra; probabilitat; estadística. Machine Learning. Revisió de conceptes. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 1 ) [1] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 3 [NOMBRE_MATERIA] => Aprendizaje profundo (I) [NOMBRE_MATERIA_VAL] => Aprenentatge profund (I) [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Redes neuronales multicapa estrechas y profundas. Implementación de modelos neuronales profundos con Keras/Tensorflow. Aplicaciones en modelización y clasificación: ejemplos. Autoencoders. Redes convolucionales. Arquitecturas y Algoritmos de aprendizaje. Aprendizaje por transferencia. Ejemplos de aplicación. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Xarxes neuronals multicapa estretes i profundes. Implementació de models neuronals profunds amb Keras/Tensorflow. Aplicacions en modelització i classificació: exemples. Autoencoders. Xarxes convolucionals. Arquitectures i Algorismes d'aprenentatge. Aprenentatge per transferència. Exemples d'aplicació. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 2 ) [2] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 1 [NOMBRE_MATERIA] => Aprendizaje profundo (II) [NOMBRE_MATERIA_VAL] => Aprenentatge profund (II) [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Redes neuronales recurrentes (RNN): LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), Bidirectional LSTM. Aplicaciones en finanzas. Redes Generativas Adversariales (GAN). [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Xarxes neuronals recurrents (RNN): LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), Bidirectional LSTM. Aplicacions en finances. Xarxes Generatives Adversariales (GAN). [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 3 ) [3] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 5 [NOMBRE_MATERIA] => Aprendizaje Reforzado [NOMBRE_MATERIA_VAL] => Aprenentatge Reforça [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Introducción. Fundamentos matemáticos: Ecuación de Bellman. Procesos MDP. Aprendizaje por diferencias temporales. SARSA. Q-Learning. DQN y variantes. RL basado en políticas. Modelos Actor-Crítico. Versiones profundas. Ejemplos de aplicación. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Introducción. Fundamentos matemáticos: Ecuación de Bellman. Procesos MDP. Aprendizaje por diferencias temporales. SARSA. Q-Learning. DQN y variantes. RL basado en políticas. Modelos Actor-Crítico. Versiones profundas. Ejemplos de aplicación. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 4 ) [4] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 2 [NOMBRE_MATERIA] => Procesado del Lenguaje Natural [NOMBRE_MATERIA_VAL] => Processament del Llenguatge Natural [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Adquisición y preprocesado de texto. Extracción de características BoW y TF-IDF. Topic Modeling. Extracción de información. Word embeddings. Transformers. Modelos generativos. Ejemplos de aplicación. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Adquisició i preprocessament de text. Extracció de característiques BoW i TF-IDF. Topic Modeling. Extracció d'informació. Word embeddings. Transformers. Models generatius. Exemples d'aplicació. [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 5 ) [5] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 4 [NOMBRE_MATERIA] => IA en cloud [NOMBRE_MATERIA_VAL] => IA en cloud [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => APIs de aprendizaje automático: Soluciones AWS: productos de DL y ML. Soluciones Google: AutoML, AI Hub. Microsoft Azure Machine Learning: servicios cognitivos. [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => APIs d'aprenentatge automàtic: Solucions AWS: productes de DL i ML. Solucions Google: AutoML, AI Hub. Microsoft Azure Machine Learning: serveis cognitius [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 6 ) [6] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 6 [NOMBRE_MATERIA] => IA industrial [NOMBRE_MATERIA_VAL] => IA industrial [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Este módulo se evaluará mediante un trabajo que los alumnos deben realizar sobre una de las aplicaciones descritas a lo largo de esta asignatura (a elección del alumno). [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 7 ) [7] => Array ( [CODIGO_CURSO] => 23811230 [AÑO_CURSO] => 35 [CODIGO] => 7 [NOMBRE_MATERIA] => Trabajo final de Máster [NOMBRE_MATERIA_VAL] => Treball final de Màster [DESCRIPCION] => programa || programa2 || programa3 [DESCRIPCION1] => Desarrollo de un trabajo poniendo en práctica los conocimientos adquiridos [DESCRIPCION2] => [DESCRIPCION3] => [DESCRIPCION1_VAL] => Desenvolupament d'un treball posant en pràctica els coneixements adquirits [DESCRIPCION2_VAL] => [DESCRIPCION3_VAL] => [ORDEN] => 8 ) ) [professors] => Array ( [0] => Array ( [DNI] => emp368945 [NOMBRE_PERSONA] => Jacinto [APELLIDOS] => Arias Martínez [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => CEA / Demosense [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [1] => Array ( [DNI] => emp368940 [NOMBRE_PERSONA] => Raúl Vicente [APELLIDOS] => Casaña Eslava [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data Scientist / Santa Bárbara [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [2] => Array ( [DNI] => emp376854 [NOMBRE_PERSONA] => Javier [APELLIDOS] => Cózar del Olmo [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => CTO [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [3] => Array ( [DNI] => emp409235 [NOMBRE_PERSONA] => Juan José [APELLIDOS] => Garcés Iniesta [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => 0 [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [4] => Array ( [DNI] => uni56104 [NOMBRE_PERSONA] => Juan [APELLIDOS] => Gómez Sanchis [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => M8537 [EMAIL_FACULTAD] => juango3@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [5] => Array ( [DNI] => uni62469 [NOMBRE_PERSONA] => Valero [APELLIDOS] => Laparra Pérez-Muelas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Ayudante/a Doctor/a [NPI] => M7054 [EMAIL_FACULTAD] => lapeva@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [6] => Array ( [DNI] => uni62689 [NOMBRE_PERSONA] => Francisco [APELLIDOS] => Martínez Gil [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Informàtica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => H6216 [EMAIL_FACULTAD] => fmgil@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [7] => Array ( [DNI] => emp246039 [NOMBRE_PERSONA] => Francisco [APELLIDOS] => Martinez Martinez [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data Scientist/Santa Bárbara. Ingeniería Técnica de Telecomunicación, especialidad en Sistemas Electrónicos [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => Data Scientist / Santa Bárbara ) [8] => Array ( [DNI] => emp246038 [NOMBRE_PERSONA] => José María [APELLIDOS] => Martínez Martínez [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data Scientist / Santa Bárbara [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [9] => Array ( [DNI] => uni62742 [NOMBRE_PERSONA] => Fernando [APELLIDOS] => Mateo Jimenez [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Ayudante/a Doctor/a [NPI] => I6169 [EMAIL_FACULTAD] => fermaji@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [10] => Array ( [DNI] => emp376772 [NOMBRE_PERSONA] => Alberto [APELLIDOS] => Oteo García [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Data scientist [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [11] => Array ( [DNI] => uni55311 [NOMBRE_PERSONA] => María [APELLIDOS] => Piles Guillem [PDI] => 6 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => N6012 [EMAIL_FACULTAD] => piguima@uv.es [CARGO_EMPRESA] => Investigador/a Contratado/a Ramón y Cajal. Universitat de València [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [12] => Array ( [DNI] => emp368937 [NOMBRE_PERSONA] => Rafael [APELLIDOS] => Plá Micó [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Presidente de Innovall Cluster [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [13] => Array ( [DNI] => emp376801 [NOMBRE_PERSONA] => Alejandro [APELLIDOS] => Rodríguez García [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [14] => Array ( [DNI] => uni64103 [NOMBRE_PERSONA] => Manuel Antonio [APELLIDOS] => Sánchez-Montañés Isla [PDI] => 3 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Contratado Doctor - Universidad Autónoma de Madrid [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [15] => Array ( [DNI] => uni51421 [NOMBRE_PERSONA] => Emilio [APELLIDOS] => Soria Olivas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Catedrático/a de Universidad [NPI] => H4268 [EMAIL_FACULTAD] => soriae@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) [16] => Array ( [DNI] => uni55893 [NOMBRE_PERSONA] => Joan [APELLIDOS] => Vila Francés [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Profesor/a Titular de Universidad [NPI] => H1797 [EMAIL_FACULTAD] => vifranjo@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) [direccio] => Array ( [0] => Array ( [0] => Array ( [DNI] => uni51421 [NOMBRE_PERSONA] => Emilio [APELLIDOS] => Soria Olivas [PDI] => 1 [DEPARTAMENTO_FACULTAD] => Departament d'Enginyeria Electrònica. Universitat de València [CARGO_FACULTAD] => Catedrático/a de Universidad [NPI] => H4268 [EMAIL_FACULTAD] => soriae@uv.es [CARGO_EMPRESA] => [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) [1] => Array ( [0] => Array ( [DNI] => emp368937 [NOMBRE_PERSONA] => Rafael [APELLIDOS] => Plá Micó [PDI] => 4 [DEPARTAMENTO_FACULTAD] => [CARGO_FACULTAD] => [NPI] => [EMAIL_FACULTAD] => [CARGO_EMPRESA] => Presidente de Innovall Cluster [DIRECCION_URL_POSTGRADO] => [URL_LINKEDIN_POSTGRADO] => ) ) ) )

Datos generales

Curso académico: Curso 2023/2024

Tipo de curso: Máster de Formación Permanente

Número de créditos: 60.00 Créditos ECTS

Preinscripción al curso: Hasta el 08/09/2023

Fecha inicio: Septiembre 2023

Fecha fin: Julio 2024

Matrícula: 3500 € (importe precio público pendiente de aprobación por el Consejo Social Universitat de València.)

Requisitos de acceso: Profesionales y estudiantes interesados en conocer las diversas herramientas de IA para ser aplicadas en diferentes empresas/sectores productivos. El perfil de los participantes es el de ingenieros, matemáticos, físicos, químicos, estadísticos y economistas. No es necesaria experiencia previa en este tipo de temática.

Modalidad: On-line

Duración y Lugar de Impartición

Lugar de impartición:

Horario: Viernes de 16:00 a 21:00 y Sábado de 9:00 a 14:00

Más información

Objetivos del curso

Este máster tiene como objetivos proporcionar los conocimientos necesarios para poder aplicar las técnicas más avanzadas de Inteligencia Artificial, teniendo la capacidad de formar profesionales altamente cualificados y con los conocimientos/skills necesarios para resolver problemas complejos, desarrollar tareas de responsabilidad en empresas o iniciar actividades de investigación tanto teórica como práctica en inteligencia artificial. Se dirige a todas las personas que procedan del ámbito de las ingenierías, ciencias puras (Matemáticas/Física) o Económicas con un background en modelización.

Objetivos profesionales

Estos perfiles profesionales pueden desarrollar su actividad en cualquier organización que utilice herramientas de IA o analice datos de cara a optimizar su negocio. Está especialmente diseñado para formar profesionales en los siguientes sectores: Sector financiero y de seguros; Sector de consultoría; Comercio electrónico; Institutos de investigación; Instituciones públicas; así como Departamentos de análisis de datos de otras industrias.

¡Preinscríbete ya!

Solicita información

He leído y acepto la información proporcionada sobre protección de datos y Política de Privacidad de ADEIT.

Consiento recibir información sobre los Títulos Propios de la Universitat de València.

Todos los campos son obligatorios

El formato de teléfono es incorrecto

El formato de correo electrónico es incorrecto

Mensaje recibido correctamente. Nos pondremos en contacto con usted lo antes posible

Error en el envío. Póngase en contacto con nosotros mediante correo electrónico

Debe aceptar la política de privacidad de ADEIT.

Por favor, verifica que no eres un robot.

Responsable: Universitat de València. Edifici del Rectorat. Av. Blasco Ibáñez, 13. 46010-València.
Delegado de Protección de Datos: D. Javier Plaza Penadés lopd@uv.es
Finalidad: Enviar información relevante de cursos de postgrado.
Se obtienen perfiles al objeto de personalizar el trato conforme a sus características o necesidades y poder así dirigirle las novedades más convenientes.
Legitimación: Para el envío de información acerca de los Títulos Propios de la Universidad de València la base de legitimación es el consentimiento del interesado.
Destinatarios: Fundació Universitat-Empresa de Valéncia y Universitat de València.
Plazo: Los datos del Usuario serán conservados hasta que solicite su baja, se oponga o revoque su consentimiento.
Derechos: Acceder, rectificar y suprimir los datos así como otros derechos como se explica en la información adicional.
Amplíe información: www.adeituv.es/politica-de-privacidad.


SÍ, ENVÍAMELO
 
Imprimir información
FAQS